Effective Lower Bounds for L(1, Χ) via Eisenstein Series

نویسنده

  • PETER HUMPHRIES
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic Congruences for Cohen - Eisenstein Series

The notion of quadratic congruences was introduced in the recently appeared paper [1]. In this note we present another, somewhat more conceptual proof of several results from loc. cit. Our method allows to refine the notion and to generalize the results quoted. Here we deal only with the quadratic congruences for Cohen Eisenstein series. A similar phenomena exists for cusp forms of half-integra...

متن کامل

Swinnerton-Dyer Type Congruences for certain Eisenstein series

This follows from the Von Staudt-Claussen Theorem regarding the divisibility of the denominators of Bernoulli numbers. Here we generalize Swinnerton-Dyer’s result to certain Eisenstein series in spaces of modular forms of weight k on a congruence subgroup of type Γ0(N) with Nebentypus character χ. These spaces are denoted by Mk(Γ0(N), χ). For background on integer weight modular forms, see [K]....

متن کامل

An Eisenstein ideal for imaginary quadratic fields and the Bloch-Kato conjecture for Hecke characters

For certain algebraic Hecke characters χ of an imaginary quadratic field F we define an Eisenstein ideal in a p-adic Hecke algebra acting on cuspidal automorphic forms of GL2/F . By finding congruences between Eisenstein cohomology classes (in the sense of G. Harder) and cuspidal classes we prove a lower bound for the index of the Eisenstein ideal in the Hecke algebra in terms of the special L-...

متن کامل

On the Eisenstein ideal for imaginary quadratic fields

For certain algebraic Hecke characters χ of an imaginary quadratic field F we define an Eisenstein ideal in a p-adic Hecke algebra acting on cuspidal automorphic forms of GL2/F . By finding congruences between Eisenstein cohomology classes (in the sense of G. Harder) and cuspidal classes we prove a lower bound for the index of the Eisenstein ideal in the Hecke algebra in terms of the special L-...

متن کامل

The L Restriction of the Eisenstein Series to a Geodesic Segment

We study the L norm of the Eisenstein series E(z, 1/2+iT ) restricted to a segment of a geodesic connecting infinity and an arbitrary real. We conjecture that on slightly thickened geodesics of this form, the Eisenstein series satifies restricted QUE. We prove a lower bound that matches this predicted asymptotic. We also prove an upper bound that nearly matches the lower bound assuming the Riem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017